Genetic Diversity Assessment and its Importance on Crop improvement in Ethiopia: Potentials and challenges

Authors

  • Obssi Dessalegn Hora University of Gondar departmet of Biotechnology Email: obsibio2009@yahoo.com or dobssi@gmail.com
  • Abebaw Misganaw Amebaw

DOI:

https://doi.org/10.5912/jcb779

Keywords:

Ethiopia, genetic diversity, germplasm conservation, molecular marker, crop improvement

Abstract

Genetic diversity assessments of plant play a great role in a predictable area to improve agricultural production and productivity, to solve food uncertainty in developing world.  Many breeders has tried to  realized that crop with diverge genetic diversity  can be assessed , evaluated ,captured and stored in the form of superior  plant  genetic resources  such as gene bank, DNA library to  preserve genetic material for long period. However, the conserved genetically diversified plant must be utilized to improve crop production in order to solve future food and nutritional challenges. This paper reviews eight important areas; (i) Gaps in Developing Taxonomy of Ethiopian crops (ii) Monitoring diversity for crop improvement, (iii) Alterations in landscape features, (iv) Significance of Germplasm Conservation of crops, (v) Gap in morphological characterization, (vi) Global perspective of agro biodiversity and molecular evolution, (vii) Emergence of tissue culture technology in Ethiopia (viii) Germplasm improvement. It provides basic enlightenment for plant breeders for better understanding and rapid diversity assessment of crop, for better understanding and utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of conventional breeding is now being accelerated and carried out with more precision and speedy manner than the classical breeding techniques by using molecular markers to avoid taxonomic confusion. For sustainable food production, conventional plant breeding research should have integration with molecular marker assisted evaluation of crops genetic diversity and/or cultivar improvement will be achieved. As a result, availability and access to diverse genetic sources will ensure that the global food production network becomes more sustainable. The merit and demerit of the basic morphological characterizations are briefly discussed and their source links were provided to get easy access; thus, it improves the understanding of modern molecular tools and its practical applicability to the breeders.

 

Author Biographies

Obssi Dessalegn Hora, University of Gondar departmet of Biotechnology Email: obsibio2009@yahoo.com or dobssi@gmail.com

Lecturer of Biotechnology

Abebaw Misganaw Amebaw

Researcher of Plant Biotechnology

References

Adeyemo, O., Menkir, A., Melaku, G., & Omidiji, O. (2011). Genetic diversity assessment and relationship among tropical- yellow endosperm maize inbred lines using SSR markers. Maydica, 56, 1–7.

Ahmad, S. (2012). Assessment of genetic diversity in Pisum germplasm for field pea improvement.

Al-Maamari, I. T., Al-Sadi, A. M., & Al-Saady, N. A. (2014). Assessment of genetic diversity in fenugreek (Trigonella foenumgraecum) in Oman. International Journal of Agriculture and Biology, 16(4), 813–818. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901002634&partnerID=40&md5=b77e0984a407ce8a007345e3ed646baf

Ali, G. M., Yasumoto, S., & Katsuta, M. (2007). Assessment of genetic diversity in sesame (Sesamum indicum L.) detected by Amplified Fragment Length Polymorphism (AFLP) markers. Electronic Journal of Biotechnology, 10(1), 0–0. https://doi.org/10.2225/vol10-issue1-fulltext-16

Ali, M., Niaz, S., Abbas, a, Sabir, W., & Jabran, K. (2009). Genetic diversity and assessment of drought tolerant sorghum landraces based on morph-physiological traits at different growth stages. Plant Omics, 2(5), 214–227. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2745.2011.01939.x/full%5Cnhttp://www.cabdirect.org/abstracts/20093272696.html

Amin Ullah Jan , Khan said , Ajmal Iqbal , Ayaz Ahmad, K. R. A., & Razzaq. (2014). Assessment of genetic diversity by seed storage proteins in wheat germplasms Department of Biotechnology University of Malakand , Chakdara Pakistan. International Journal of Biosciences | IJB |, 6655, 1–5.

AO, Y., XU, Y., CUI, X., WANG, A., TENG, F., SHEN, L., & LIU, Q. (2016). A genetic diversity assessment of starch quality traits in rice landraces from the Taihu basin, China. Journal of Integrative Agriculture, 15(3), 493–501. https://doi.org/http://dx.doi.org/10.1016/S2095-3119(15)61050-4

Bardini, M., Lee, D., Donini, P., Mariani, A., Gianì, S., Toschi, M., … Breviario, D. (2004). Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome / National Research Council Canada = Genome / Conseil National de Recherches Canada, 47(2), 281–291. https://doi.org/10.1139/g03-132

Bonneuil, C., Goffaux, R., Bonnin, I., Montalent, P., Hamon, C., Balfourier, F., & Goldringer, I. (2012). A new integrative indicator to assess crop genetic diversity. Ecological Indicators, 23, 280–289. https://doi.org/10.1016/j.ecolind.2012.04.002

Casadebaig, P., & Trépos, R. (2014). Increased genetic diversity improves crop yield stability under climate variability : a computational study on sunflower. arXiv, (1), 1–24. Retrieved from http://arxiv.org/abs/1403.2825

Chavan, V. M. S. N. S., & Patil, Y. K. (2015). Assessment of Genetic Diversity among Wheat Varieties in Aurangabad Using RAPD Analysis, 4(8), 671–694.

Ellstrand, N., Raven, P., Snow, A., & Solleiro, J. L. (2004). Maize and Biodiversity : The Effects of Transgenic Maize in Mexico. Group, 1–55. Retrieved from http://www.cec.org/files/PDF//Maize-Biodiversity-Chapter3_en.pdf

Esfahani, S. T., Shiran, B., & Balali, G. (2009). AFLP markers for the assessment of genetic diversity in european and North American potato varieties cultivated in Iran. Crop Breeding and Applied Biotechnology, 9, 75–86.

Eshghi, R., Abrahimpour, F., Ojaghi, J., & Salayeva, S. (2012). Evaluation of genetic variability in naked barley ( Hordeum vulgare L .). International Journal of Agriculture and Crop Sciences, 4(16), 1166–1179.

Genetic diversity in mango (. (2013), 38(June), 343–353.

Gohil, R. H., & Pandya, J. B. (2008). Genetic diversity assessment in physic nut (Jatropha curcas L.). International Journal of Plant Production, 2(4), 321–326.

Golparvar, A. R. (2011). Genetic Diversity Assessment for Improvement of Nitrogen Fixation Ability and Seed Production in Iranian Common Bean Genotypes ( Phaseolus vulgaris L .), 5, 147–150.

Grewal, S., Kharb, P., Malik, R., Jain, S., Jain, R. K., & Race, L. (2007). Assessment of genetic diversity among some Indian wheat cultivars using random amplified polymorphic DNA ( RAPD ) markers, 6(January), 18–23.

Havlí?ková, L., Jozová, E., Rychlá, A., & Klíma, M. (2014). Genetic Diversity Assessment in Winter Oilseed Rape ( Brassica napus L . ) Collection Using AFLP , ISSR and SSR Markers, 2014(3), 216–225.

Hussain, A., Ahmed, I., Nazir, H., & Ullah, I. (2012). Plant Tissue Culture: Current Status and Opportunities. Recent Advances in Plant in Vitro Culture, 1–28. https://doi.org/10.5772/50568

Khanlou, K. M., Vandepitte, K., Asl, L. K., & B, E. V. (2011). Towards an optimal sampling strategy for assessing genetic variation within and among white clover ( Trifolium repens L .) cultivars using AFLP. Genetics and Molecular Biology, 34(2), 252–258.

Kunyuga, P. W. (2012). ASSESSMENT OF GENETIC DIVERSITY OF SORGHUM ( Sorghum bicolor ) ACCESSIONS FROM TANZANIA USING SSR MARKERS : IMPLICATIONS FOR CONSERVATION.

Li, J. Q., & Zhang, P. (2002). Assessment and Utilization of the Genetic Diversity in Rice ( Orysa sativa L .).

Lin, H. Y., Wu, Y. P., Hour, A. L., Ho, S. W., Wei, F. J., Hsing, Y. I. C., & Lin, Y. R. (2012). Genetic diversity of rice germplasm used in Taiwan breeding programs. Botanical Studies, 53(3), 363–376.

Madhusudhana, R., Balakrishna, D., Rajendrakumar, P., Seetharama, N., & Patil, J. V. (2012). Molecular characterization and assessment of genetic diversity of sorghum inbred lines. African Journal of Biotechnology, 11(90), 15626–15635. https://doi.org/10.5897/AJB12.321

Maryan, K. E., Lahiji, H. S., & Deylami, M. S. (2012). Assessing the genetic diversity of tobacco (, (2007), 125–132.

Mishra, C. N., Tiwari, V., Satish-Kumar, Gupta, V., Kumar, A., & Sharma, I. (2015). Genetic diversity and genotype by trait analysis for agromorphological and physiological traits of wheat (Triticum aestivum L.). Sabrao Journal of Breeding and Genetics, 47(1), 40–48.

Mtui, G. Y. S. (2011). Status of biotechnology in Eastern and Central Africa. Biotechnology and Molecular Biology Reviews, 6(9), 183–198. https://doi.org/10.5897/BMBR11.021

Nascimento, W. F., Rodrigues, J. F., Koehler, S., Gepts, P., & Veasey, E. A. (2013). Spatially structured genetic diversity of the Amerindian yam (Dioscorea trifida L.) assessed by SSR and ISSR markers in Southern Brazil. Genetic Resources and Crop Evolution, 60(8), 2405–2420. https://doi.org/10.1007/s10722-013-0008-y

Pordel-maragheh, F. (2013). Assess the genetic diversity in some wheat genotypes through agronomic traits, 2(4), 71–75.

Sasikala, T. P., & Kamakshamma, J. (2015). Research Article Genetic Diversity Assessed Through RAPD Markers in Shorea Tumbaggia, 31(21), 102–106.

Sciences, P., Naz, S., Zafrullah, A., Shahzadhi, K., & Munir, N. (2013). Assessment of Genetic Diversity Within Germplasm Accessions in Tomato Using Morphological and Molecular Markers. The Journal of Animal & Plant Sciences, 23(4), 1099–1106.

Seid, M. A. (2013). Plant tissue culture biotechnology in Ethiopia: Challenges and opportunities. BioSciences Opportunities, 7(7).

Shefali Boonerjee, M. Nurul Islam, M. I. H. and R. H. S. (2013). PTC & B, 23(2).

Singh, V. K., Bangari, G., Singh, D., & Tewari, S. (2011). Evaluation of Genetic Variation Within Brassica juncea Genotypes Using Biochemical and Morphological markers, 24(2), 208–214.

Tefera, W., & Wannakrairoj, S. (2004). A micropropagation method for korarima (Aframomum corrorima (Braun) Jansen). ScienceAsia, 30(1), 1–7. https://doi.org/10.2306/scienceasia1513-1874.2004.30.001

Tsegaw, M., & Feyissa, T. (2014). Micropropagation of Plectranthus edulis ( Vatke ) Agnew from meristem cultur, 13(36), 3682–3688. https://doi.org/10.5897/AJB2014.14005

Turyagyenda, L. F., Kizito, E. B., Ferguson, M. E., Baguma, Y., Harvey, J. W., Gibson, P., & Wanjala, B. W. (2012). Genetic diversity among farmer-preferred cassava landraces in uganda. African Crop Science Society, 20, 15–30. https://doi.org/10.4314/acsj.v20i1.

Vinu, V., Singh, N., Vasudev, S., Yadava, D. K., Kumar, S., Naresh, S., … Prabhu, K. V. (2013). Assessment of genetic diversity in Brassica juncea (Brassicaceae) genotypes using phenotypic differences and SSR markers. Revista de Biolog??a Tropical, 61(4), 1919–1934.

Abebe T, Viljoen, CD, Laubuschange MT (2004) Microsatellite analysis of the genetic distance between 15 potato (Solanum tubersom L.) genotypes. pp. 89-97: In Proc. of the 11th Conference of Crop Science Society of Ethiopia. April 26-28, 2004 Addis Ababa, Ethiopia.

Abreham Bekele,Tileye Feyissa and KassahunTesfaye (2014). Genetic diversity of anchote (Cocciniaabyssinica (Lam.) Cogn.) from Ethiopia as revealed by ISSR markers. Genetic Resources and Crop Evolution (In press).

Aga E, Bekele E, Bryngelsson T (2005) Inter-simple sequence repeat (ISSR) variation in forest coffee trees (Coffea arabica L.) populations from Ethiopia. Genetica 124:213-21.

Aga E, Bryngelsson T, Bekele E, Salomon B (2003) Genetic diversity of forest arabica coffee (Coffea arabica L.) in Ethiopia as revealed by random amplified polymorphic DNA (RAPD) analysis. Hereditas. 138:6-46.

Alemayehu Teresa Negawo (2007). Genetic diversity of Coffea arabica L. collections using Microsatellite (SSRs) Markers. African journal of agricultural science, 7(11): 67-68

Anthony F., Combes C.M., Astorga C., Bertrand B., Graziosi G. and Lashermes P. (2002).The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers. TheorAppl Genet 104: 894–900.

Anthony. F., • Combes.C.M., • Astorga. C, • Bertrand. B, Graziosi. G and • Lashermes.P (2002).The origin of cultivated Coffea arabica L. varieties revealedby AFLP and SSR markers. TheorApplGenet104:894–900.

Ayana A, Bekele E, Bryngelsson T (2000) Genetic variation in wild sorghum (Sorghum bicolor ssp. verticilliflorum L. Moench) germplasm from Ethiopia assessed by random amplified polymorphic DNA (RAPD) Hereditas 132:249-54.

Ayana A, Bryngelsson T, Bekele E (2000) Genetic variation of Ethiopian and Eritrean sorghum (Sorghum bicolor ssp. verticilliflorum (L.) Moench) germplasm assessed by random amplified polymorphic DNA (RAPD). Genet. Resources Crop Evol. 47:471-482.

Ayenew B, Tadesse T, Gebremariam E, Mengesha A and Tefera W (2013). Efficient use of temporary immersion bioreactor (TIB) on pineapple (ananas comosus l.) Multiplication and rooting ability JMBFS 2 (4): 2456-2465

Bagali G., Prashanth, Prabhu Herold, Antony D. P., Raghavendra K., Bagali G., Pramod, Hittalmani Shailaja and Vadivelu S., Jamunarani (2010). Application of Molecular Markers in Plant Tissue Culture, AsPac J. Mol. Biol. Biotechnol. 18(1):85-87.

Bai G, Ayele M, Tefera H, Nguyen HT (1999a) Amplified Fragment Length Polymorphism analysis of tef [Eragrostis tef (Zucc.) Trotter]. Crop Sci. 39:819-824.

Bai G, Ayele M, Tefera H, Nguyen HT (2000) Genetic diversity in tef [Eragrostis tef (Zucc) Trotter] and its relatives as revealed by Random Amplified Polymorphic DNAs. Euphytica 112: 15-22

Bai G, Tefera H, Ayele M, Nguyen HT (1999b) A genetic linkage map of Tef [Eragrostis tef (Zucc.) Trotter] based on amplified fragment length polymorphism. Theor. Appl. Genet. 99:599-604

Baudoin,J. and MergeaiG. (2001).Yam beans phenol stylist end carpa.In:R.H.Raemaekers(ed) crop production in tropical Africa Directorate general for international (DGIC) Brussels, Belgium. Pp.372–377.

Bekele E, Geleta M, Dagne K, Jones AL, Barnes I, Bradman N, Thomas MG (2007) Molecular phylogeny of genus Guizotia (Asteraceae) using DNA sequences derived from ITS. Genet. Resources Crop Evol. 54:1419-1427.

Beyene Y, Botha A, Myburg AA (2006). Genetic diversity in traditional Ethiopian highland maize accessions assessed by AFLP markers and morphological traits. Biodivers. Conserv. 15:2655-2671.

Birmeta G, Nybom H, Bekele E (2002) RAPD analysis of genetic diversity among clones of the Ethiopian crop plant Ensete ventricosum. Euphytica, 124: 315-325.

Birmeta G, Welander M (2004). Efficient micropropagation of Ensete ventricosum applying meristem wounding: a three-step protocol. Plant Cell Rep. 23: 277-283.

Birmeta, G., Nybom. H. and Bekele, E. 2002. RAPD analysis of genetic diversity among clones of the Ethiopan crop plant Ensete ventricosum. Euphytica124: 315- 325.

Birmeta, G., Nybom. H. and Bekele, E. 2004. Distinction between wild and cultivated enset (Ensete ventricosum) gene pools in Ethiopia using RAPD markers. Hereditas140: 139-148.

Chaabane Ramzi, El Felah, Mouldi, Ben Salah Hammadi, Ben Naceur M., Barek, Abdelly Chedly, Ramla Dalila, Nada Ahmad and Saker Mahmoud (2009). Molecular Characterization of Tunisian Barley (Hordeum Vulgare L.) Genotypes using Microsatellites (SSRs) Markers.European Journal of Scientific Research 36(1): 6-15.

Chaabane Ramzi, El Felah Mouldi, Ben Salah Hammadi, Ben Naceur M’Barek, Abdelly Chedly, Ramla Dalila, Nada Ahmad and Saker Mahmoud (2009). Molecular Characterization of Tunisian Barley (Hordeum Vulgare L.) Genotypes using Microsatellites (SSRs) Markers.European Journal of Scientific Research 36(1): 6-15.

Clegg T.M, Kobayashi M., and Lin Z.J., (1999). The use of molecular markers in the management and improvement of Avocado (Persea Americana Mill). Revista Chapingo Serie Horticultura5: 227-231.

Combes.C.M, Andrzejewski.S, Anthony.F, Bertrand.B, Rovelli.P, Graziosis G.S. and Lashermes.P (2000). Characterization of microsatellite loci in Coffea arabica and related coffee species. Molecular Ecology9:1171 – 1193.

Cubry Philippe, Musoli Pascal, Legnate Hyacinte, Pot David, De Bellis Fabien, Poncet Valerie, Anthony Francois, Dufour Magali and Leroy Thierry (2008). Diversity in coffee assessed with SSR markers: structure of the genus Coffea and perspectives for breeding. Genome 51: 50 – 63.

Dawit Beyene, Tileye Feyissa and Girma Bedada (2010). Micropropagation of selected cassava (ManihotesculentaCrantz) varieties from meristem culture. Ethiopian Journal of Biological Sciences 9(2): 127-142.

Demisse A, Bjornstad A, Kleinhofs A (1998) Restriction Fragment Length Polymorphisms in landrace barleys from Ethiopia in relation to geographic, altitude, and agro-ecological factors. Crop Sci. 38:237- 243.

Dessalegn Yigzaw, Herselman L. and Labuschagne T.M, (2008). AFLP analysis among Ethiopian arabica coffee genotypes. African Journal of Biotechnology 7 (18): 3193-3199.

Disasa T, Feyissa T, Dagne K (2011). In vitro regeneration of niger (Guizotia abyssinica L.F.) Cass.). Int. J. Biosci. 1(6): 110-118

EtichaFirdissa, SineboWoldeyesus and GrausgruberHeinrich (2010). On-farm Diversity and Characterization of Barley (Hordeum vulgareL.) Landraces in the Highlands of West Shewa, Ethiopia. Ethnobotany Research & Applications8:025-034.

Feyissa T, Nybom H, Bartish, IV, Welander M (2007) Analysis of genetic diversity in the endangered tropical tree species Hagenia abyssinica using ISSR markers. Genet. Resources Crop Evol. 54:947-958.

Fikiru E., Tesfaye K. and Bekele E., (2010). A comparative study of morphological and molecular diversity in Ethiopian lentil (Lens culinaris Medikus) landraces. African Journal of Plant Science 4:242-254.

Geleta M, Bryngelsson T, Bekele E, Dagne K (2007) AFLP and RAPD analyses of genetic diversity of wild and/or weedy Guizotia (Asteraceae) from Ethiopia. Hereditas 144:53-62.

Geleta N, Labuschagne TM, Viljoen CD (2006) Genetic diversity analysis in sorghum germplasm as estimated by AFLP, SSR and morpho-agronomical markers. Biodivers. Conserv. 15: 3251-3265.

GemechuKeneni, MussaJarso, TezeraWolabu and Getnet Dino (2005). Extent and pattern of genetic diversity for morpho-agronomic traits in Ethiopian highland landraces:I. Field pea (Pisum sativum L.) . Holetta Agricultural Research Center and Kulumsa Agricultural Research Center. Addis Ababa. Ethiopia. Genetic Resources and Crop Evolution52:551 – 561.

Genet T, Viljoen CD, Labuschagne MT (2005) Genetic analysis of Ethiopian mustard genotypes using amplified fragment length polymorphism (AFLP) markers. Afr. J. Biotechnol. 4: 891-897.

Getachew Melaku, Teklehaimanot Haileselassie, Tileye Feyissa and Samuel Kiboi (2013). Genetic diversity of the African wild rice (OryzalongistaminataChev. etRoehr) from Ethiopia as revealed by SSR markers. Genetic Resources and Crop Evolution 60(3): 1047-1056.

Getachew Tafere Abrha, Firew Mekbib , Belayneh Admassu (2014). In vitro propagation of Ethiopian mustard (Brassica carinata A. BRAUN), African journal of Biotechnology, 13(48), 4438-4448

Gezahegn G, Mekbib F (2016). In vitro regeneration of disease free enset [Ensete ventricosum (Welw) Cheesman] planting materials from bacterial wilt diseased plants using shoot tip culture, African Journal of Biotechnology, 15(40), pp. 2192-2201

Girma G., Tesfaye K., Bekele E., (2010). Inter Simple Sequence Repeat (ISSR) analysis of wild and cultivated rice species from Ethiopia. African Journal of Biotechnology 9: 5048-5059.

Hailekiros Tadesse and TileyeFeyissa (2013). Analysis of Genetic diversity of sorghum (Sorghum bicolor ssp. bicolor (L.) Moench using ISSR Markers. Asian Journal of Plant Sciences 12(2): 61-70

Henry R., (1997). “Molecular markers in plant improvement,” in Practical Applications of Plant Molecular Biology, Chapman& Hall, London, UK, pp. 99–132.

http://en.wikipedia.org/wiki/Main_Page.

Korzun Viktor (2008) .Molecular markers and their application in cereals breeding. Marker assisted selection. A fast track to increase genetic gain in plant and animal breeding Session I: MAS in plants, African journal of biotechnology, 6(11):67-69

Larkin Philip. CSIRO Plant Industry, Canberra, Australia. DOI: 10.1081/E-EPCS-120010550.

Mesfin Teshome and Tileye Feyissa (2013).Genetic Diversity of Wild Sorghum (Sorghum bicolor ssp. verticilliflorum (L.) Moench) Germplasm from Ethiopia as Revealed by ISSR Markers Asian Journal of Plant Sciences 12(3): 137-144

MistruTesfaye, TileyeFeyissa and LikyeleshGugsa (2010). Embryogenic callus induction and regeneration in anther culture of noug (Guizotiaabyssinica (L.F) Cass.). SINET: Ethiopian Journal of Science. 33(1): 49-58

Moncada Pilar and McCouch Susan (2004). Simple sequence repeat diversity in diploid and tetraploid Coffea species.Genome 47: 501–509.

MostafaK.,Mohammad,H.andMohammad,M. Australian Jour. of Crop Sc.20115(1):

Narain P., (200) “Genetic diversity conservation and assessment,” Current Science, 79(2), pp. 170–175.

Nasiri J., Haghnazari A. and Saba J. (2009).Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on SSR markers. African Journal of Biotechnology8 (15): 3405-3417.

Negash A, Puite K, Schaart J, Visser B, Krens F (2000). In vitro regeneration and micro-propagation of enset from Southwestern Ethiopia, Plant Cell, Tissue and Organ Culture 62: 153–158

Negash A, Tsegaye A, Van Treuren R, Visser B (2002) AFLP analysis of enset clonal diversity in south and south western Ethiopia for conservation. Crop Sci. 42:1105-1111.

Negash A., Tsegaye A., Van Treuren, (2002). AFL analysis of enset clonal diversity in south and southwestern Ethiopia for conservation. Crop Sci.42: 1105-1111.

Negash Almaz (2001). Diversity and Conservation of Enset (Ensete ventricosum Welw.Cheesman) and its relation to household food and livelihood security in south-western Ethiopia. Ph. D thesis, Wageningen University. The Netherlands, ISBN90 -5808-466-3.

Obssi Dessalegn, Kassahun Bantte, Mulugeta Diro, (2015). Effects of different combination of plant growth regulator on in vitro propagation of yam (Dioscorea species). Journal of applied Biotechnology, 3(2). 20-40.

Rohlf F.J., (2002): Numerical Taxonomy System, Version 2.1, Exeter Publishing, Setauket, NY, USA.

Roza Berhanu and Tileye Feyissa (2013). Factors affecting in vitro propagation of cassava (Manihotesculentacrantz) varieties of ‘Kello’ and ‘Qulle’. Ethiopian Journal of Biological Sciences 12(1): 25-39.

Semagn K (2002) Genetic relationships among ten endod types as revealed by a combination of morphological, RAPD and AFLP markers. Hereditus 137:149-156.

Silvestrini M, Junqueira MJ, Favarin AC, Guerreiro-Filho O, Maluf MP, Silvarolla MB, Colombo CA (2007) Genetic diversity and structure of Ethiopian, Yemen and Brazilian Coffea arabica L. accessions using microsatellites markers Genetic Resources & Crop Evolution 54:1367-1379.

Smýkal Peter, HoráèekJiøí, DostálováRadmila, HýblMiroslav (2008). Variety discrimination in pea (Pisum sativum L.) by molecular,biochemical and morphological markers.J Appl Genet49(2): 155–166.

T.Feyissa, M.Welander, L.Negash; Micropropagation of Hagenia abyssinica, a multipurpose tree, Plant Cell, Tissue&Organ Culture, 80, 119-128 (2005).

Tamiru M, Becker HC, Maass BL (2007). Genetic diversity in yam germplasm from Ethiopia and their relatedness to the main cultivated Discorea species assessed by AFLP markers. Crop Sci. 27:1744- 1753.

Tasew Getu and Tileye Feyissa (2012). In vitro regeneration of sweet potato (Ipomoea batatas(L.) Lam.) from leaf and petiole explants. Ethiopian Journal of Biological Sciences 11(2): 147-162.

Tekalign Wondimu, TileyeFeyissa and Girma Bedada (2012). Meristem culture of selected sweet potato (Ipomoea batatas (L.) Lam.) cultivars for production of virus free planting material. Journal of Horticultural Science and Biotechnology 87(3): 255-260.

Teklewold A, Becker HC (2006) Geographic pattern of genetic diversity among 43 Ethiopian Mustard (Brassica carinata A. Braun) accessions as revealed by RAPD analysis. Genet. Resources Crop Evol. 53:1173-1185.

Tesfaye Disasa, Tileye Feyissa, Kifle Dagne (2011). In vitro regeneration of niger (Guizotia abyssinica L.F.) Cass.). Int. J. Biosci. 1(6): 110-118

Tesfaye K, Borsch T, Govers K, Bekele E (2007) Characterization of Coffea chloroplast microsatellites and evidence for the recent divergence of C. arabica and C. eugenioides chloroplast genomes. Genome 50:1112-29.

Thorpe T (2007) History of plant tissue culture. J. Mol. Microbial Biotechnol. 37: 169-180.

Tsegaye Getahun, Tileye Feyissa and Likyelesh Gugsa (2013). Regeneration of plantlets from unpollinated ovary cultures of Ethiopian wheat (Triticum turgidumand Triticum aestivum). African Journal of Biotechnology 12(39): 5754-5760.

Tsegaye Getahun, Tileye Feyissa, Likyelesh Gugsa (2012). Somatic embryogenesis and plant regeneration from embryo rescue cultures of F1 hybrids of teff with its wild relatives. African Crop Science Journal 20(3): 189 – 196

Wakjira A, Viljoen CD, Labuschagne MT (2005) Analysis of genetic diversity in linseed using AFLP markers. SINET: Ethiopian J. Sci. 28:41-50.

Wang HY, Wei YM, Yan ZH, Zheng YL (2007) EST-SSR DNA polymorphism in durum wheat (Triticum durum L.) collections. J. Appl. Genet. 48:35-42.

Winter P. and Kahl G., (1995). “Molecularmarker technologies for plant improvement,” World Journal of Microbiology & Biotechnology, 11(4), pp. 438–448.

Workia Ahmed, Tileye Feyissa and Tesfaye Disasa (2013). Somatic Embryogenesis of Coffee (Coffeaarabica L.) Hybrid from Leaf Explants. Journal of Horticultural Science and Biotechnology 88(4): 469-475

Yifru T, Hammer K, Huang XQ, Roder MS (2006) Regional patterns of microsatellite diversity in Ethiopian tetraploid wheat accessions. Plant Breed. 125: 125–130.

Yosef Yambo and Tileye Feyissa (2013). Micropropagation of Anchote (Cocciniaabyssinica (Lam.) Cogn.): High Calcium Content Tuber Crop of Ethiopia. African Journal of Agricultural Research 8(46): 5915-5922.

Yu JK, Graznak E, Breseghello F, Tefera H, Sorrells ME (2007) QTL mapping of agronomic traits in tef [Eragrostis tef (Zucc) Trotter]. BMC Plant Biology 7:30.

Yu JK, Sun Q, La Rota M, Edwards H, Tefera H, Sorrells, ME (2006) Expressed sequence tag analysis in tef (Eragrostis tef (Zucc) Trotter). Genome 49: 365-372.

Zhang D, Ayele M, Tefera H, Nguyen, HT (2001) RFLP linkage map of the Ethiopian cereal tef [Eragrostis tef (Zucc.) Trotter]. Theor. Appl. Genet. 102: 957-964.

Published

2017-06-21

Issue

Section

Article